
November, 20214 CIO Advisor 5 November, 2021CIO Advisor

Your Application is Mostly
Written by Strangers

By Edwin Kwan, Head of Application and Software Security, Tyro Payments

Software development has evolved from a
waterfall development model to an agile model.
Development cycles have shrunk from releasing
new versions a few times a year to every couple
of weeks or in some organisations, multiple times

a day. The applications themselves have also reduced in
size, having gone from being large monolithic systems to
micro services and now even serverless. And ownership of
the applications has also changed. We’re moving from a
model where applications were once
built by developers and then managed
by operations, to a “You Build it,
You Run it” DevOps model where
the team who builds the application
is responsible for its operation.
Development teams that were once
made up of only software engineers
are now cross-functional teams and
have quality/testing and operations
expertise.

The application security
landscape has also changed over
time. It started as black-box security
penetration testing, where the
assessors had no knowledge of the
application's inner workings This has
evolved into white-box testing with
the assessor having access to the application’s source code.
This has improved the quality of their testing as assessors
can refer to the source code to determine if a vulnerability
exists. We’ve also seen the introduction of vulnerability
scanners and automated security scanning tools. Some
of those tools include Static Application Security Testing

(SAST), Dynamic Application Security Testing (DAST), and
Software Composition Analysis (SCA). SAST does source
code analysis to find security vulnerabilities. DAST scans
the running application to detect conditions that indicate
a security vulnerability. SCA scans the third party, often
open-sourced components used by the application for
known vulnerabilities.

Penetration testing is still an activity that is performed
towards the end of the software development life cycle.

However, vulnerability and automated
security scanning tools have allowed
application security testing to be done
earlier. Organisations have shifted
security to the left, doing security
earlier in the development life cycle,
and adopted a continuous application
security testing model. This is done
by embedding application security
testing into the build phase of the
software development life cycle,
particularly into the Continuous
Integration (CI) pipelines. While this
approach is a significant improvement
to how organisations do application
security testing, the approach can
be further improved through supply
chain management and addressing

technical debt in open source components.
It is now exceedingly rare for organisations to build

their applications from the ground up. Instead, they tend
to leverage publicly available open-source components
to create the bulk of their applications. Most open source
components are designed and supported by a volunteer

group of distributed software developers who voluntarily
contribute their own time or their company's time to develop the
component. According to the 5th Annual Report on Global Open
Source Software Development [1], 85% of modern applications
are built from open source components. The percentage is higher
for modern JavaScript web applications, with 97% of the code in
a modern web application coming from open source component
packages. So, you can say that a large majority of your
application's code is written by a distributed group of strangers
rather than your development team.

When it comes to creating applications, the developers usually
decide on the programming languages they use. They also select
which open-source components to include in their applications.
While I am all for empowering developers, there needs to be
more due diligence applied to the open source component
selection process. Not all open source components are created
equal, and in the same annual report [1], 10.3% of all Java
libraries downloaded from the maven central repository in 2018
had known vulnerabilities. That figure is higher for JavaScript
components, with 51% of the downloaded components having
known security vulnerabilities. Vulnerabilities are also prevalent
in older components, with those released three years ago or
later having 65% more known vulnerabilities [1]. There needs
to be an appropriate selection process in place for open source
components. This would prevent open source components with
known vulnerabilities from being introduced into the application.
There has been an uptake of open source consumption in the

past five years [1]. And during that time, there has
also been a 71% increase in open-source related
breaches. The selection process must be lightweight,
so it does not impede development, and it should
ideally be automated. All new components should
be scanned for any known vulnerabilities. It should
also be from a reputable source, and the version used
should be less than three years old. The benefit of this
is not introducing known vulnerabilities into your
application and using components that are more likely
to be well supported by the open-source community.

As modern applications become more dependent
on open source components, one of the biggest
challenges we're facing is stale dependencies. Stale
dependencies are when an application's open-source
components become outdated and are not getting the
bug or security fixes that have been addressed by their
newer versions. Keeping open source components
up to date is not a trivial task as new versions are
occasionally not backward compatible. They can
introduce breaking changes, and there is potentially
a substantial economic cost associated with it.
However, as open-source components make up a
significant portion of an application's code, usually,
most of the security vulnerabilities reside. Letting
dependencies become stale and only addressing them
once a security vulnerability has been detected is
disruptive and slows development significantly. While
open source components allow applications to be
developed quickly, the associated maintenance effort
required is often neglected. This is commonly referred
to as the open-source "tax". What organisations need
to be doing is scheduling work to address this "tax" on
a regular basis. A best practice approach is to mandate
that applications must not have stale dependencies
when released. Besides, time must be set aside to
address stale dependencies in the other applications
which are not actively being developed. The benefit
of reducing stale dependencies is the reduction in the
number of future security vulnerabilities and the time
required to address them.

As the bulk of modern applications are created
using open source components, doing due diligence
during the open-source selection process and
dealing with stale dependencies will address many
potential security vulnerabilities. These additional
controls, coupled with other vulnerability scanners,
automated security scanning tools, and penetration
testing, will help to speed up development, create
more secure applications and reduce business
risks. The future of application security is to shift
further left.

Edwin Kwan

CX
O

IN
SI

GH
TS

As the bulk of modern
applications are created

using open source
components, doing due

diligence during the
open-source selection

process and dealing with
stale dependencies will
address many potential
security vulnerabilities

